Studies of adhesion-dependent platelet activation: distinct roles for different participating receptors can be dissociated by proteolysis of collagen.

نویسندگان

  • P Siljander
  • R Lassila
چکیده

The molecular differences between native-type collagen type I fibrils (NC) and their pepsinated monomers (PC) were used to uncover receptors involved in platelet-collagen interaction along the adhesion-activation axis. The platelet-depositing capacity of NC and PC under blood flow and their adhesive properties and respective morphologies, aggregation, procoagulant capacity, and tyrosine phosphorylation were compared under different cationic milieus, including or excluding the glycoprotein (GP) Ia/IIa. NC was consistently a more preferable and activating substrate than PC during flow (5 minutes) and in platelet aggregation. In PPACK-treated blood, both NC (3.3-fold) and PC (2.7-fold) increased platelet attachment on elevation of the shear rate from 500 to 1640 s(-1), whereas in citrated blood, adhesion and thrombus growth on PC were negligible under the high shear rate, unlike on NC (1.9-fold increase). The complete lack of platelet deposition on PC in citrated blood could be overcome by restoring physiological Mg(2+) concentration, and in contrast to NC, platelets interacting with PC were highly dependent on Mg(2+) during adhesion, aggregation, and procoagulant response. Monoclonal antibody (mAb 131.7) against GP IV inhibited platelet deposition to NC in citrated blood (2 minutes) by 49%, which was not further increased by coincubation with mAb against GP Ia (6F1). These results stress the importance of GP Ia/IIa in shear-resistant platelet deposition on collagen monomers. In native fibers, however, the preserved quaternary structure with telopeptides activates additional platelet receptors capable of substituting GP Ia/IIa and GP IV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different Stages of Platelet Adhesion to the Site of Vascular Injury

Platelet activation and adhesion to the site of vascular injury is a dynamic process comprising reversible and irreversible phases. Platelet adhesion typically occurs in a multi-step process similar to the selectin/integrin-mediated adhesion of neutrophils. This phenomenon is highly regulated and influenced by the cross-talk between platelets and injured endothelium. This cross-talk involves a ...

متن کامل

Platelet receptor proteolysis: a mechanism for downregulating platelet reactivity.

The platelet plasma membrane is literally at the cutting-edge of recent research into proteolytic regulation of the function and surface expression of platelet receptors, revealing new mechanisms for how the thrombotic propensity of platelets is controlled in health and disease. Extracellular proteolysis of receptors irreversibly inactivates receptor-mediated adhesion and signaling, as well as ...

متن کامل

Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation.

The adhesion G protein-coupled receptors (GPCRs) are a distinct family of more than 30 receptors in vertebrate genomes. These receptors have been shown to play pivotal roles in a diverse range of biological functions and are characterized by extremely large N termini featuring various adhesion domains capable of mediating cell-cell and cell-matrix interactions. The adhesion GPCR N termini also ...

متن کامل

Mini Review Adhesion G Protein-Coupled Receptors: Signaling, Pharmacology & Mechanisms of Activation

Word Count: 240 Abstract The adhesion G protein-coupled receptors (GPCRs) are a distinct family of more than 30 receptors in vertebrate genomes. These receptors have been shown to play pivotal roles in a diverse range of biological functions and are characterized by extremely large N-termini featuring various adhesion domains capable of mediating cell-cell and cell-matrix interactions. The adhe...

متن کامل

Principal Role of Glycoprotein VI in 2 1 and IIb 3 Activation During Collagen-Induced Thrombus Formation

Objective—High-shear perfusion of blood over collagen results in rapid platelet adhesion, aggregation, and procoagulant activity. We studied regulation of 2 1 and IIb 3 integrin activation during thrombus formation on collagen. Methods and Results—Blockade of glycoprotein (GP) VI by 9O12 antibody or of P2Y purinergic receptors permitted platelet adhesion but reduced aggregate formation, fibrino...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 1999